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Abstract. Let D be a large category which is cocomplete. We construct a

model structure (in the sense of Quillen) on the category of small functors from

D to simplicial sets. As an application we construct homotopy localization
functors on the category of simplicial sets which satisfy a stronger universal

property than the customary homotopy localization functors do.

1. Introduction

Let S be the category of simplicial sets. In this paper we introduce axiomatic
homotopy theory into the study of functors from a large category D into S, in other
words, into the study of diagrams in S indexed by D. Such diagrams arise naturally
(for instance in the treatment of Goodwillie calculus, which in one form deals with
functors from S itself into S) but in the past they have been dealt with by ad hoc
techniques. The novelty of our approach is the introduction of a model category
structure, which allows for the use of standard tools from axiomatic homotopy
theory.

There is an obvious set–theoretic difficulty in dealing with the index categories
we wish to consider: if D is large, the totality of natural transformations between
two functors S → S does not necessarily form a set, and so the collection of all such
functors is not even a category in the usual sense, much less a model category. We
overcome this difficulty by restricting our attention to the category SDsm of small
(2.1) functors D → S. This category is always cocomplete. If D itself is cocomplete,
then SDsm is also complete, and it is in this situation we can construct a model
category on SDsm. This model structure reduces to the ordinary projective model
category structure on the category of all functors D → S if D is small [3], therefore
we call the model structure of Theorem 3.1 also projective; observe though that for
technical reasons our model structure in general lacks functorial factorization.

We discuss in detail two examples, D = Sop and D = S. For D = Sop, we
generalize the arguments of [10] to show that our model structure on SDsm is Quillen
equivalent to the equivariant model structure developed by Farjoun [7] on the cat-
egory of maps of spaces. The model category SSsm does not seem to have an anal-
ogous interpretation. The category of pro-spaces may be viewed as dual to the
subcategory of pro-representable functors in SSsm, and its model structure [12] [16]
is perhaps the closest relative to our model structure on SSsm.
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An immediate application of the model structure on SSsm is a construction of
homotopy localizations in this category. Although this construction itself involves
factorizations and is thus non-functorial in SSsm, an application of the constuction
to the identity functor yields an object of SSsm (i.e., a functor S → S) which is
equivalent to the ordinary homotopy localization functor on simplicial sets but has
a stronger universal property. We finish the paper by using these homotopy local-
ization functors to construct natural A-Postnikov towers in S. Another application
of the model structure on SSsm is developed in [1].

Acknowledgements. The first author would like to thank Jiŕı Rosický for helpful
conversations on the early stages of this project. We are deeply obliged to Steve
Lack for sharing with us his unpublished work.

1.1. Notation. We continue to let S denote the category of simplicial sets, which
we also refer to as the category of spaces. If C and D are categories, we simplify
notation by using CD to denote the category CDsm of all small functors D → C. If D
itself is small, this is the category of all functors D → C. A simplicial category is
a category enriched over S, such as S itself; functors between two such categories
are assumed to respect the enrichments, in the sense that they provide simplicial
maps between the respective function complexes.

2. Preliminaries on small functors

The object of study of this paper is homotopy theory of functors from a large
simplicial category to S. The totality of these functors does not form a category in
the usual sense, since the natural transformations between two functors need not
form a set in general, but rather a proper class. We are willing to be satisfied with
a treatment of a reasonable subcollection of functors, a subcollection which does
form a category. The purpose of this section is to describe such a subcollection.

Definition 2.1. Let D be a (not necessarily small) simplicial category. A functor
Xe : D → S is representable if there is an object D ∈ D such that Xe is naturally
equivalent to RD, where RD(D′) = homD(D,D′). A functor Xe : C → S is called
small if Xe is a small weighted colimit of representables.

Remark 2.2. Since the category of small functors is tensored over simplicial sets,
the small weighted colimit above may be expressed as a coend of the form

(1) RF ⊗I G =
∫ I∈I

RF (I) ⊗G(I),

where I is a small category and F : I→ D, G : I→ S are functors. Here RF : Iop →
SD assigns to I ∈ I the representable functor RF (I) : D → S. For the general
treatment of weighted limits and colimits see [17].

Since the simplicial tensor structure on the category of small fuctors SD is given
by the objectwise direct product, we will use Xe ×K to denote tensor product of
Xe ∈ S with K ∈ S.

The above coend is the (enriched) left Kan extension of the functor G over the
functor F . Using the transitivity of left Kan extensions, it is easy to see that the
following four conditions are equivalent [17, Prop. 4.83]:

• Xe : D → S is a small functor,
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• there is a small simplicial category I and a functor G : I→ S, such that Xeis isomorphic to the left Kan extension of G over some functor I→ D,
• there a small simplicial subcategory i : D′ → D and a functor G : D′ → S,

such that Xe is isomorphic to the left Kan extension of G over i, and
• there is a small full simplicial subcategory i : DXf → D such that Xe is

isomorphic to the left Kan extension of i∗(Xe ) over i.

If D ∈ D and Ye is a functor D → S, then by Yoneda’s lemma the simplicial class
of natural transformations RD → Ye is Ye (D); in particular, this simplicial class is
a simplicial set. It follows easily that if Xe is a small functor D → S, then the
natural transformations Xe → Ye also form a simplicial set (this also follows from
2.2 above and the adjointness property of the left Kan extension). In particular,
the collection of all small functors is a simplicial category.

Remark 2.3. M.G. Kelly [17] calls small functors accessible and weighted colimits
indexed. He proves that small functors form a simplicial category which is closed
under small (weighted) colimits [17, Prop. 5.34].

In order to do homotopy theory we need to work in a category which is not only
cocomplete, but also complete (at least under finite limits). Fortunately, there is a
simple sufficient condition in the situation of small functors.

Theorem 2.4. If D is cocomplete, then the category SD of small functors D → S
is complete.

Remark 2.5. There is a long story behind this theorem. P. Freyd [13] introduced
the notion of petty and lucid set-valued functors. A set-valued functor is called petty
if it is a quotient of a small sum of representable functors. Any small functor is
clearly petty. A functor F : A→ Sets is called lucid if it is petty and for any functor
G : A → Sets and any pair of natural transformations α, β : G ⇒ F , the equalizer
of α and β is petty. Freyd proved [13, 1.12] that the category of lucid functors
from Aop to Sets is complete if and only if A is approximately complete (that
means that the category of cones over any small diagram in A has a weakly initial
set). J. Rosický then proved [19, Lemma 1] that if the category A is approximately
complete, a functor F : Aop → Sets is small if and only if it is lucid. Finally, these
results were partially generalized by B. Day and S. Lack [18] to the enriched setting.
They show, in particular, that the category of small V–enriched functors Kop → V

is complete if K is complete and V is a symmetric monoidal closed category which
is locally finitely presentable as a closed category. This last condition is certainly
satisfied if V = S.

3. A model category on SD

As usual, SD denotes the category of small functors D → S.

Theorem 3.1. Assume that D is cocomplete. Then the category SD has a model
category structure in which weak equivalences and fibrations are defined objectwise
and the cofibrations are the maps which have the left lifting property with respect to
acyclic fibrations. (The factorizations provided by this model category structure are
not necessarily functorial.)

Remark 3.2. The use of “objectwise” above signifies that a map F → G is a weak
equivalence (fibration) if and only if for eachX ∈ D the induced map F (X)→ G(X)
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is a weak equivalence (fibration) of simplicial sets. We are using the ordinary model
category structure on simplicial sets, in which a map is a weak equivalence if its
geometric realization is a weak equivalence of topological spaces, and a fibration if
it is a Kan fibration (see, e.g., [15, Thm. 3.6.5]).

Recall from 2.1 the notion of representable functor, as well as the notation RD =
hom(D, –) for the functor represented by D. We first need a definition and some
lemmas, which exhibit yet additional uses of the word small.

Definition 3.3. A collection L of objects in a category B is said to be locally small
in B if for every object X of B there exists a set of objects OX ⊂ L such that
any map Y → X with Y ∈ L can be factored as a composite Y → Y ′ → X for
some Y ′ ∈ OX .

Remark 3.4. More standardly, the statement that L is locally small is expressed
by saying that L satisfies the co–solution set condition. The set OX is called the
co–solution set associated to X. Our terminology follows [7], since the idea of the
proof of Theorem 3.1 also goes back to [7].

Lemma 3.5. The collection of representable functors is locally small in SD.

Proof. Suppose that Xe is in SD, and write Xe as a small weighted colimit as in (1).
Given a representable functor RD, consider the simplicial set hom(RD, Xe ). From
the generalized Yoneda lemma, and the fact that weighted colimits of diagrams are
computed levelwise, we obtain:

(2) hom(RD, Xe ) = Xe (D) = RF (D)⊗I G =
∫ I∈I

hom(RD, RF (I))×G(I).

Comparing the sets of the zero simplices of the simplicial sets above, we conclude
that every map RD → Xe factors through a map RD → RF (I) for some I ∈ I. �

Definition 3.6. The category of maps in SD, denoted Map(SD), is the category
whose objects are the arrows f : Xe → Ye in SD. A morphism f → f ′ is a commu-
tative diagram

Xe
f

��

// Xe ′
f ′

��

Ye // Ye ′
Lemma 3.7. If g : K → L is a map of spaces, then the collection

L(g) = {RD ×K → RD × L | D ∈ D}
is locally small in Map(SD).

Remark 3.8. It follows immediately that if {gα}α∈A is a set of maps between spaces,
then the union ∪αL(gα) is also locally small in Map(SD).

Proof of 3.7. Consider a morphism

RD ×K
gD

��

// Xe
f

��

RD × L // Ye
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in Map(SD). This morphism gives rise, by adjunction, to the following commuta-
tive diagram:

RD

$$

��

ϕ

!!B
B

B
B

Wf
��

// Xe K

��

Ye L // YeK ,
where Wf is defined so that the square is a pullback square. By Lemma 3.5 there
exists a set of representable functors OWf , such that any morphism from a rep-
resentable functor to Wf can be factored through an object in OWf . Now take
Of = {F ×K → F × L | F ∈ OWf }, and observe that any map from gD to f will
factor, by adjunction, through one of the objects in Of . �

Let us now briefly remind the setup of the generalized small object argument,
which applies for locally small collections of maps with small domains. The reader
might want to consult [5] for a more extensive discussion. Suppose that L is a
locally small collection in Map(SD), that f : Xe → Ye is an object in Map(SD),
and that Of is the associated co–solution set for f (3.4). We define Γ1

L(f) to be
the natural map γ1

L(f)→ Y , where γ1
L(f) is determined by the following pushout

diagram: ∐
β Ue β

��

// Xe
��∐

β Ve β // γ1
L(f).

Here β runs through the set of pairs (gβ , hβ), where gβ : Ue β → Ve β belongs to
Of and hβ : gβ → f is a morphism in Map(SD). It is easy to see that the map
Xe → Ye extends to a map γ1

L(f)→ Ye . For n > 1, we let γnL(f) = γ1
L(Γn−1

L (f)), and
ΓnL(f) : γnL(f)→ Y the induced natural map. Finally, γ∞L (f) denotes colimn γ

n
L(f),

and Γ∞L (f) : γ∞L (f)→ Y is the evident natural map.
Recall that a simplicial set is said to be finite if it has a finite number of non-

degenerate simplicies and a finite simplicial set K is ℵ0–small in the category of
simplicial sets, in the sense that hom(K, –) commutes with countable sequential
colimits.

In order to conclude, by the generalized small object argument, that the induced
map Γ∞L (f) : γ∞(f) → Ye has the right lifting property with respect to all of the
maps in L, the class L must satisfy an additional condition (to local smallness) that
all domains of maps in L are λ–small for some fixed cardinal λ.

Yoneda’s lemma and smallness of finite simplicial sets imply the last condition
if L is the collection ∪αL(gα) for a set {gα : Kα → Lα}α∈A of monomorphisms
between finite simplicial sets. L is locally small by 3.8.

Remark 3.9. The construction of the map Γ∞L (f) : γ∞(f) → Ye has a natural
generalization to an arbitrary transfinite cardinal λ: ΓλL(f) : γλ(f) → Ye . We will
not need the transfinite version until we prove Theorem 5.1, than we refer to an
even more general approach of [5].
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Remark 3.10. The construction of Γ1
L(f) or Γ∞L (f) is not functorial unless the co–

solution sets Of depend in some natural way on f . This would be the case, for
instance, if Of = L for all f , but of course this would be allowed only if L itself is a
set. Another example where Of depends functorially on f occurs in the equivariant
model category of [7]. See [4] for the construction of functorial factorizations in this
model category. In general, there are two versions of the generalized small object
argument: functorial and non-functorial [5]. We apply the non-functorial version
in this work.

Proof of 3.1. There are several variations in the literature of the definition of a
model category. We prove the axioms MC0–MC5 in the form of [11]. The required
limits and colimits exist by the discussion in the previous section. The ‘2-out-of-3’
axiom and the fact that weak equivalences and fibrations are closed under retracts
follows from the corresponding properties of the category S. By the definition of
cofibration, every cofibration has the left lifting property with respect to any acyclic
fibration. In particular, cofibrations are closed under retracts.

Although our model category is not cofibrantly generated [15, Section 2.1], it has
a similar structure, namely, it is class-cofibrantly generated [5, Def. 1.3]. In order
to verify the second lifting property and two factorization properties, let us define
the classes of generating cofibrations and generating acyclic cofibrations to be

I = {RD × ∂∆n ↪→ RD ×∆n|D ∈ D, n ≥ 0}
J = {RD × Λnk ↪→ RD ×∆n|D ∈ D, n > 0, n ≥ k ≥ 0}

where as usual ∆n is the n-simplex, ∂∆n its boundary, and Λnk the space obtained
by removing the k’th face of ∆n from ∂∆n. A map in S is an acyclic fibration if and
only if it has the right lifting property with respect to the inclusions ∂∆n → ∆n,
n ≥ 0 and so it follows by adjunction that a map in SD is an acyclic fibration if and
only if it has the right lifting property with respect to the maps in I. Similarly, a
map in SD is a fibration if and only if it has the right lifting property with respect
to the maps in J .

Suppose that f : Xe → Ye is a map in SD, and note that by Remark 3.8 above
the classes I and J permit the generalized small object argument [5]. Therefore,
the composite Xe → γ∞I (f) → Ye is a factorization of f into the composite of a
cofibration with an acyclic fibration, while Xe → γ∞J (f)→ Ye is a factorization into
the composite of an acyclic cofibration and a fibration.

The second lifting property is achieved by a standard trick; see, e.g., [10]. Given
an acyclic cofibration f : Ae → Be , let Ce = γ∞J (f) and factor f as a composite
Ae → Ce → Be . By construction the map Ae → Ce has the left lifting property with
respect to any fibration. Since Ce → Be is actually an acyclic fibration (by the
‘2-out-of-3’ property), lifting in the diagram

Ae
��

// Ce
��

Be // Be
shows that Ae → Be is a retract of Ae → Ce and thus also has the left lifting property
with respect to any fibration. �
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4. Example: D = Sop

In order to illustrate the concept of the projective model structure on the cate-
gory of small functors SD by a familiar model category, we considerD = Sop. In this
case we construct a Quillen equivalence between SD and the category Map(S)eq;
the subscript “eq” signifies that this is the category Map(S) of maps in S (3.6)
endowed with the “equivariant” or “fine” model structure of [7].

Recall from [9] that an orbit inMap(S) is a diagram A→ B in S whose colimit
is isomorphic to the one–point space ∗ = ∆0. Since the colimit of A→ B is B, an
orbit in Map(S) is simply an object of the form A → ∗, and so, via the functor
which assigns to such a diagram the space A, the category O of orbits is equivalent
to S. We will let OA = (A→ ∗) be the orbit inMap(S) corresponding the space A.
The following definition was given in [7]:

Definition 4.1. The equivariant model structure or fine model structure onMap(S)
is the model category Map(S)eq in which the underlying category is Map(S),
and in which a map X → Y between objects of Map(S) is a weak equivalence
(fibration) if and only for each A ∈ S it gives a weak equivalence (fibration)
hom(OA, X)→ hom(OA, Y ) in S.

The above definition suggests assigning to each object X ofMap(S) the diagram
XO : Sop → S sending A to hom(OA, X); the functor (–)O : Map(S)→ SSop

both
preserves and reflects weak equivalences.

Lemma 4.2. For every M ∈ Map(S), the functor MO : Sop → S is a small
functor; in particular, M 7→MO gives a functor (−)O : Map(S)→ SSop

.

Proof. This was essentially shown in [6]. More precisely, Farjoun proved (in a
more general context) that for any object M ∈ Map(S) there exists a small full
subcategory i : OM ↪→ O such that MO is the left Kan extension of i∗(MO) (cf.
2.2). �

Let us construct the left adjoint to the functor (−)O by verifying the conditions
of the adjoint functor theorem: the orbit-point functor obviously preserves limits, so
it remains to verify the solution-set condition. This means for any small diagram
Xe ∈ SS

op
we need to find a set of arrows fi : Xe → Y Oi such that any arrow

f : Xe → ZO, for Z ∈Map(S) factorizes as f = (k)O ◦ fi for some map k : Yi → Z.
Recall from [10] that for every full simplicial subcategory I ⊂ O ∼= S there is a

pair of adjoint functors

(3) |–|I : SIop
�Map(S) : (–)I,

(which is a Quillen equivalence if one considers the model structure induced by the
set I of orbits on Map(S)).

If Xe is small, then it is a left Kan extension of i∗Xe : Iop → S for a small simplicial
full subcategory I of the orbit category O ∼= S and i : Iop → Oop.

Given f : Xe → ZO, consider i∗f : i∗Xe → i∗ZO = ZI and look at the adjoint
map (i∗f)] : |i∗Xe |I → Z. Let Y = |i∗Xe |I and k = (i∗f)]. We obtain the following
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commutative triangle:

i∗Xe
##GG

GG
GG

GG
G

// i∗(Y O)

zzttttttttt

i∗(ZO).

The horizontal arrow is the unit of adjunction (3): i∗Xe → (|i∗Xe |I)I = Y I =
i∗(Y O). Consider the adjoint triangle:

Lani(i∗Xe ) ∼= Xe
&&MMMMMMMMMMM

// Lani(i∗(Y O))

xxrrrrrrrrrr

ZO.

Since Y has orbit type OY = I by construction, [6, 4.26] implies Lanii∗(Y O) ∼=
Y O and we obtain the required factorization Xe → Y O → ZO, so that f = kOf ′.

That means that the functor (–)O has a left adjoint. We will call this left adjoint
realization and denote it by Ze 7→ |Ze |.More explicitly, the left adjoint to the functor X 7→ XO is the functor which
assigns to Ye ∈ SD the coend Inc×D Ye , where Inc : Dop = S = O ↪→ Map(S) is
the inclusion of the full subcategory of orbits (for notational reasons, let D = Sop).
Of course on the face of it this is a large coend, but it actually gives a functor for
the following reason. Since Ye is a small diagram, there is a small full subcategory
i : I ⊂ D such that Ye is the left Kan extension of i∗(Ye ) over i. It then follows from
associativity properties of coends that Inc×D Ye is isomorphic to the small coend
Inc×I i

∗(Ye ).

Remark 4.3. A similar realizarion functor was constructed in [6, 3.11]. The main
difference of our construction is that the domain category of our functor is the
category of small functors, whether in [6] the author talks about the category of
all contravariant functors from spaces to spaces.

Proposition 4.4. The functors X 7→ XO and Ye 7→ |Ye | form a Quillen pair, which
give a Quillen equivalence between SSop

and Map(S)eq.

Proof. To produce the Quillen pair, it will suffice by [14, 8.5.3] to show that any
(acyclic) fibration inMap(S)eq is preserved by the functor X 7→ XO; this, however,
follows immediately from definition of the model category structures onMap(S)eq

(4.1) and on SSop
(3.1).

In order to show that the pair of functors is a Quillen equivalence we have to
prove that for any cofibrant diagram Ye ∈ SS

op
and for any fibrant X ∈Map(S), a

map f : Ye → XO is a weak equivalence if and only if the adjoint map f ] : |Ye | → X
is a weak equivalence. But, by the definition of weak equivalences, f ] is a weak
equivalence if and only if (f ])O : |Ye |O → XO is a weak equivalence, so it will suffice,
by the 2-out-of-3 property, to show that the unit of the adjunction induces a weak
equivalence g : Ye → |Ye |O for every cofibrant diagram Ye . This we now do.

From the small object argument (§3) we know that Ye is a retract of Γ∞I (∅ → Ye ),
where ∅ is the empty diagram. Since retracts are preserved by all functors, and
retracts of weak equivalences are weak equivalences, we can assume that Ye =
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Γ∞I (∅ → Ye ). Let Ye n = ΓnI (∅ → Ye ); then

Ye = colim(Ye 1 → Ye 2 → · · · → Ye n → · · · ),
where Ye n → Ye n+1 is obtained by a pushout∐

αR
Aα ⊗ ∂∆n

��

// Ye n
��∐

αR
Aα ⊗∆n // Ye n+1 .

Since left adjoints commute with colimits we obtain:

|Ye | = colim(|Ye 1| → |Ye 2| → · · · → |Ye n| → · · · ),
where |Ye n| → |Ye n+1| is obtained by a pushout∐

α |RAα | ⊗ ∂∆n

��

// |Ye n|
��∐

|RAα | ⊗∆n // |Ye n+1|.

But |RA| ∼= OA = (A→ ∗), as can be verified by using above coend description of
the realization functor, or by a simple adjointness verification. Hence, the pushout
diagram above becomes ∐

αOAα ⊗ ∂∆n

��

// |Ye n|
��∐

αOAα ⊗∆n // |Ye n+1|.

But it was shown in [7] and [4] that the functor (−)O commutes up to a weak
equivalence with all colimits of the above form. This immediately leads the conclu-
sion that the natural map Ye → |Ye |O is a weak equivalence in the SSop

. �

5. Application: homotopy localization of spaces

In this section we take D = S and we present an application of the projective
model structure on SS to homotopy localization in the category of spaces.

We first recall some basic notions. Suppose that f : A → B is a cofibration of
spaces. A space Z is said to be f -local if Z is fibrant and f∗ : hom(B,Z) →
hom(A,Z) is a weak equivalence in S; a map X → Y is an f -equivalence if
hom(Y,Z) → hom(X,Z) is a weak equivalence in S for every f -local Z. Finally,
an f -equivalence X → X ′ is an f -localization map if X ′ is f -local.

It is well known (see [2] and [8]) that there exists a homotopy idempotent, coaug-
mented, simplicial homotopy functor Lf : S → S which has the following two prop-
erties:

(1) for any X ∈ S the coaugmentation ηX : X → Lf (X) is an f -localization
map, and
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(2) for every map g : X → Z, where Z ∈ S is f -local, there exists a factorization
of g

X

ηX
""DD

DD
DD

DD
g

// Z

LfX,

h

<<z
z

z
z

and in this factorization the map h is unique up to simplicial homotopy.
We produce a localization functor which is weakly equivalent to the one above,

but which has a stronger universal property. Assume as usual that f : A→ B is a
cofibration of spaces.

Theorem 5.1. There exists a homotopy idempotent, coaugmented, small, simpli-
cial, homotopy functor Lf : S → S with the following two properties:

(1) for any X ∈ S the coaugmentation ηX : X → Lf (X) is an f -localization
map, and

(2) for every coaugmented functor Le : S → S taking f -local values, there exists
a factorization

Id

η
��

@@
@@

@@
@@

ε // Le .

Lf

ζ

??~
~

~
~

In this factorization the natural transformation ζ is unique up to a simpli-
cial homotopy (of natural transformation).

Proof. We sketch the proof, with references. Given a cofibration f : A ↪→ B, con-
sider the class N of maps in SS given by N = {RC × f | C ∈ S}. Then N is
locally small in Map(SS) (3.7), and just as in the fixed-point-wise situation of [4],
the class

Hor(N) =
{

(RC × f) �
(
∂∆n

↓
∆n

) ∣∣∣∣ C ∈ S, n ≥ 0
}

=

RC ×A×∆n
∐

RC×A×∂∆n

RC ×B × ∂∆n → RC ×B ×∆n

∣∣∣∣∣∣ C ∈ S, n ≥ 0

 .

permits the generalized small object argument [5]. (Note that although the functors
hom(A, –) and hom(B, –) do not necessarily commute with sequential colimits in S,
they do commute with well–ordered colimits of sufficiently high cofinality.) Observe
now that the identity functor Id and the constant functor ∗ on S are small and in
fact representable; one is RC for C = ∗ and the other for C being the empty
diagram. Therefore, taking L = Hor(N) ∪ J and applying the generalized small
object technique, we can factor the map Id → ∗ into a composite Id → Ke → ∗ in
which, by construction, Ke is a small simplicial functor.

There are three properties of this factorization to notice. First, by the very
nature of the generalized small object technique, the map Ke → ∗ has the right
lifting property with respect to the maps in L. This amounts to the assertion
that for each C ∈ S the space Ke (C) is fibrant and has the right lifting property
with respect to the maps in Hor(N), i.e., to the assertion that Ke (C) is f -local.
Secondly, if Le : S → S is a functor which takes on f -local values, then the induced
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map hom(Ke , Le ) → hom(Id, Le ) is an acyclic fibration in S. This follows from the
way in which Ke is constructed from iterated pushouts of the maps in L, and the
fact that for any g : U → V in Hor(N) and any f -local space Z, the restriction map
hom(V,Z) → hom(U,Z) is an acyclic fibration. By picking C ∈ S and applying
this observation to the coextended diagram Le given by Le (X) = hom(hom(X,C), Z),
one sees that for any f -local space Z, hom(K(C), Z) → hom(C,Z) is an acyclic
fibration. In particular C → K(C) is an f -equivalence. Finally, Ke is a homotopy
functor; in fact the above considerations show that Ke is an f -localization functor,
and it follows formally from the definition that such functors take weak equivalences
between spaces into simplicial homotopy equivalences between fibrant spaces. To
finish the proof, it is enough to take Lf = Ke . We leave it to the reader to deduce
from 5.1(2) that Lf is homotopy idempotent. �

6. Example: A functorial A-Postnikov tower

It is well known that there exists a construction of the classical Postnikov tower,
which is functorial ‘as a tower’. However, this construction, due to Moore, is
ad hoc and does not allow for a natural generalization. Our new construction of
localizations provides a general method of obtaining functorial towers.

Example 6.1. E. Farjoun discussed a Postnikov tower with respect to a space
A [8]. This is a construction that associates to every space X a tower of spaces
· · · → PΣnAX → PΣn−1AX → · · · → PΣAX → PAX, where PB = LB→∗ is
the nullification functor. The classical construction of localizations ensured that
each level in this tower is a functor in X, but not the whole tower. We take an
advantage of localizations with the functorial universal property in order to obtain
an equivalent tower functorial in X.

Let fn be the map ΣnA → ∗ for all n ≥ 0. From now on denote by PΣnA =
Lfn the localization functor with functorial universal property constructed in the
previous section. A fibrant simplicial set X is fn-local iff ∗ ' hom(ΣnA,X) =
hom(Σn−1A,ΩX) = Ω hom(Σn−1A,X). Therefore if a fibrant X is fn−1-local, then
X is fn-local. By Theorem 5.1 for each n > 0 there exists a natural transformation
ζn : Lfn → Lfn−1 . Combining ζn for all n > 0 we obtain the required tower of

functors · · · → PΣnA
ζn−→ PΣn−1A

ζn−1−→ · · · → PΣA
ζ1−→ PA. If A = S0, then we

recover a new construction of the classical Postnikov tower.

Remark 6.2. The construction of the localization functor with a stronger functorial
property can be carried out also in the stable model cateogry of spectra. As an
application we can obtain the functorial decomposition of spectra into a tower of
chromatic layers.
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